C.U.SHAH UNIVERSITY Winter Examination-2015

Subject Name: Metric Space

Subject Code: 4SC05MSC1

Semester: 5 Date: 07/12/2015 Time:02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

- **a**) Define: Metric Space.
- **b**) Define: Derived Set.
- c) Define Cauchy sequence in a metric space.
- **d**) If A = [2, 7] U [7,9], then find \overline{A} .
- e) Define: Complete metric space.
- **f**) Is [5, 6] compact?
- g) Define dense sets in a metric space.
- **h**) If = R, A = Q, then find *int A*.
- i) Define: Diameter of a non-empty set.
- **j**) ϕ and X are open in any metric. Determine whether the statement is True or False?
- **k**) The arbitrary union of closed sets in a metric space is closed set. Determine whether the statement is True or False?
- **I)** Every Cauchy sequence is convergent. Determine whether the statement is True or False?
- **m**) Continuous image of compact set is compact. Determine whether the statement is True or False?

Page 1 || 3

Branch: B. Sc. (Mathematics)

(14)

The cantor set is perfect set. Determine whether the statement is True or False? n)

Attempt any four questions from Q-2 to Q-8

Q-2	a)	Attempt all questions Let (X, d) be any metric space. Show that the function d_1 defined by $d_1(x, y) = \frac{d(x, y)}{1+d(x, y)}, \ \forall x, y \in X$ is a metric on X .	(14) (05)
	b)	Which of the following sets are open sets. Justify. <i>i</i>) $(-1,1)$ on <i>R</i> , <i>ii</i>) $\{(x,y) / x = y\}$ on \mathbb{R}^2 , <i>iii</i>) $\{(x,y) / x^2 + y^2 < 1\}$ on \mathbb{R}^2 , <i>iv</i>) $[0, 1)$ on <i>R</i> , <i>v</i>) $(0, 1) U (2, 3)$.	(05)
	c)	Let (X, d) be any metric space. Prove that a subset F of X is closed if and only if its complement in X is open.	(04)
Q-3	a)	Attempt all questions Prove that every compact subset A of a metric space (X, d) is bounded.	(14) (05)
	b)	Let (X, d) be a metric space and $Y \subseteq X$, then prove that a subset to be open in (Y, d_Y) if and only if there exists a set <i>G</i> open in (X, d) such that $A = G \cap Y$.	(05)
	c)	Let (X, d) be a metric space, and let $d'(x, y) = \min\{1, d(x, y)\}$ for all $x, y \in X$. Then show that d and d' are equivalent.	(04)
Q-4	a)	Attempt all questions Prove that the function $d: C \times C \to R$ defined by $d(x, y) = \frac{2 x-y }{\sqrt{1+ x^2 }\sqrt{1+ y^2 }}$ is a metric on the set of all complex numbers.	(14) (05)
	b)	Which of the following sets are closed sets. Justify. <i>i</i>) $[-1,1]$ on <i>R</i> , <i>ii</i>) $\{(x,y) / x = y\}$ on R^2 , <i>iii</i>) $\{(x,y) / x^2 + y^2 = 1\}$ on R^2 , <i>iv</i>) $\{(x,y) / x^2 + y^2 > 1\}$ on R^2 , <i>v</i>) $\{1,2,3,4,5\}$.	(05)
	c)	Prove that every open sphere is open set.	(04)

Q-5 Attempt all questions

(14) Let A and B be any two subsets of a metric space (X, d). Then prove that (05) a)

Page 2 || 3

		$i) \overline{A \cup B} = \overline{A} \cup \overline{B} , ii) \overline{A \cap B} \subseteq \overline{A} \cap \overline{B} .$	
	b)	Prove that arbitrary union of open sets is open.	(05)
	c)	Let <i>A</i> and <i>B</i> be any two subsets of a metric space (X, d) , then prove that <i>A</i> is closed if and only if $A \supseteq Fr(A)$.	(04)
Q-6	a)	Attempt all questions State and prove Hein-Borel theorem.	(14) (07)
	b)	Let (X, d_1) and (Y, d_2) is metric spaces. Prove that $f: X \to Y$ is continuous if and only if $f(\overline{A}) \subseteq \overline{f(A)}$, for every $A \subseteq X$.	(05)
	c)	Let <i>A</i> and <i>B</i> be any two subsets of a metric space (X, d) , then prove that $A \subseteq B$ implies <i>int</i> $A \subseteq int B$.	(02)
Q-7	a)	Attempt all questions For any non-empty subset <i>A</i> of a metric space (X, d) the function $f: X \to R$ given by $f(x) = d(x, A)$, for $x \in X$ is uniform continuous. Also prove that $f(x) = 0$ if and only if $x \in \overline{A}$.	(14) (07)
	b)	Prove that continuous image of a connected set is connected.	(05)
	c)	If $f(x) = x^2$, $0 \le x \le \frac{1}{3}$, then show that f is contracting mapping on $\left[0, \frac{1}{3}\right]$ with the usual metric d .	(02)
Q-8	a)	Attempt all questions State and prove Banach Fixed point theorem.	(14) (07)
	b)	Let (X, d_1) and (Y, d_2) is metric space and f is a function from Xinto Y. Then prove that f is continuous at $a \in X$ if and only if for every sequence $\{a_n\}$ converging to a , the sequence $\{f(a_n)\}$ should be converges to $f(a)$.	(05)
	c)	Find <i>int A</i> , <i>ext A</i> , <i>fr A</i> , <i>bd A</i> for the set $X = N$, $A = \{1, 2, 3, 4, 5, 6\}$.	(02)

Page 3 || 3

