\qquad

C.U.SHAH UNIVERSITY

 Winter Examination-2015
Subject Name: Metric Space

Subject Code: 4SC05MSC1
Semester: 5 Date: 07/12/2015 Time:02:30 To 05:30 Marks: 70

Instructions:

(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Attempt the following questions:
a) Define: Metric Space.
b) Define: Derived Set.
c) Define Cauchy sequence in a metric space.
d) If $A=[2,7] U[7,9]$, then find \bar{A}.
e) Define: Complete metric space.
f) Is $[5,6]$ compact?
g) Define dense sets in a metric space.
h) If $=R, A=Q$, then find int A.
i) Define: Diameter of a non-empty set.
j) $\quad \phi$ and X are open in any metric. Determine whether the statement is True or False?
k) The arbitrary union of closed sets in a metric space is closed set. Determine whether the statement is True or False?

1) Every Cauchy sequence is convergent. Determine whether the statement is True or False?
m) Continuous image of compact set is compact. Determine whether the statement is True or False?

n) The cantor set is perfect set. Determine whether the statement is True or False?

Attempt any four questions from Q-2 to Q-8

Attempt all questions

a) Let (X, d) be any metric space. Show that the function d_{1} defined by $d_{1}(x, y)=\frac{d(x, y)}{1+d(x, y)}, \forall x, y \in X$ is a metric on X.
b) Which of the following sets are open sets. Justify.
i) $(-1,1)$ on R,
ii) $\{(\mathrm{x}, \mathrm{y}) / \mathrm{x}=\mathrm{y}\}$ on R^{2},
iii) $\left\{(\mathrm{x}, \mathrm{y}) / \mathrm{x}^{2}+\mathrm{y}^{2}<1\right\}$ on R^{2},
iv) $[0,1)$ on R,
v) $(0,1) U(2,3)$.
c) Let (X, d) be any metric space. Prove that a subset F of X is closed if and only if its complement in X is open.
a) Prove that every compact subset A of a metric space (X, d) is bounded.
b) Let (X, d) be a metric space and $Y \subseteq X$, then prove that a subset to be open in $\left(Y, d_{Y}\right)$ if and only if there exists a set G open in (X, d) such that $A=G \cap Y$.
c) Let (X, d) be a metric space, and let $d^{\prime}(x, y)=\min \{1, d(x, y)\}$ for all $x, y \in X$. Then show that d and d^{\prime} are equivalent.

Attempt all questions

 metric on the set of all complex numbers.
b) Which of the following sets are closed sets. Justify.
i) $[-1,1]$ on R,
ii) $\{(x, y) / x=y\}$ on R^{2},
iii) $\left\{(x, y) / x^{2}+y^{2}=1\right\}$ on R^{2},
iv) $\left\{(x, y) / x^{2}+y^{2}>1\right\}$ on R^{2},
v) $\{1,2,3,4,5\}$.
c) Prove that every open sphere is open set.

Attempt all questions

a) Let A and B be any two subsets of a metric space (X, d). Then prove that

i) $\overline{A \cup B}=\bar{A} \cup \bar{B}, \quad$ ii) $\overline{A \cap B} \subseteq \bar{A} \cap \bar{B}$.
b) Prove that arbitrary union of open sets is open.
c) Let A and B be any two subsets of a metric space (X, d), then prove that A is closed if and only if $A \supseteq \operatorname{Fr}(A)$.

Attempt all questions
a) State and prove Banach Fixed point theorem.
b) Let $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ is metric space and f is a function from X into Y. Then prove that f is continuous at $a \in X$ if and only if for every sequence $\left\{a_{n}\right\}$ converging to a, the sequence $\left\{f\left(a_{n}\right)\right\}$ should be converges to $f(a)$.
c) Find int A, ext $A, f r A, b d A$ for the set $X=N, A=\{1,2,3,4,5,6\}$.

